當(dāng)前VLSI技術(shù)不斷向深亞微米及納米級(jí)發(fā)展,模擬開關(guān)是模擬電路中的一個(gè)十分重要的原件,由于其較低的導(dǎo)通電阻,極佳的開關(guān)特性以及微小封裝的特性,受到人們的廣泛關(guān)注。模擬開關(guān)導(dǎo)通電阻的大小直接影響開關(guān)的性能,低導(dǎo)通電阻不僅可以降低信號(hào)損耗而且可以提高開關(guān)速度。要減小開關(guān)導(dǎo)通電阻,可以通過采用大寬長比的器件和提高柵源電壓的方法,可是調(diào)節(jié)器件的物理尺寸不可避免地會(huì)帶來一些不必要的寄生效應(yīng),比如增大器件的寬度會(huì)增加器件面積進(jìn)而增加?xùn)烹娙荩}沖控制信號(hào)會(huì)通過電容耦合到模擬開關(guān)的輸入和輸出,在每個(gè)開關(guān)周期其充放電過程中會(huì)消耗更多的電流,時(shí)間常數(shù)t=RC,充放電時(shí)間取決于負(fù)載電阻和電容,使得開關(guān)的速度變慢,同時(shí)增大寬長比也增加了器件的成本。當(dāng)前減小導(dǎo)通電阻的普遍辦法是提高開關(guān)管的柵電壓。
1傳統(tǒng)模擬開關(guān)原理及柵增壓原理

圖1傳統(tǒng)模擬開關(guān)
在MOS技術(shù)中,傳統(tǒng)的開關(guān)實(shí)現(xiàn)就是一個(gè)PMOS管和一個(gè)NMOS管并聯(lián),如圖1所示,A和B兩端分別為傳送信號(hào)的輸入、輸出端,兩個(gè)管子的柵極分別由極性相反的信號(hào)來控制。由于MOS管的源極和漏極可以互換,因此這個(gè)電路的輸入、輸出端也可以互換,它可以控制信息雙向流通,就像一個(gè)雙向開關(guān)。工作過程:當(dāng)控制信號(hào)S=1時(shí),PMOS管和NMOS管均導(dǎo)通,傳輸門接通,信號(hào)暢行無阻;當(dāng)控制信號(hào)S=0時(shí),PMOS管和NMOS管均截止,傳輸門關(guān)閉,開關(guān)斷開。當(dāng)一管的導(dǎo)通電阻減小,則另一管的導(dǎo)通電阻就增加。由于兩管是并聯(lián)運(yùn)行,可近似地認(rèn)為開關(guān)的導(dǎo)通電阻近似為一常數(shù)。這是CMOS傳輸門的優(yōu)點(diǎn)。
1.1模擬開關(guān)分析
CMOS開關(guān)的導(dǎo)通電阻為:

導(dǎo)通電阻將不隨輸入信號(hào)改變而改變,可等效為一個(gè)恒定阻值的電阻,如式(3),不會(huì)引起模擬信號(hào)的失真,由于導(dǎo)通電阻是由兩個(gè)電阻并聯(lián),所以阻值較單管開關(guān)小得多,使得開關(guān)速率又得到提高。從式(3)中可以知道MOS開關(guān)為了能提高速度和精度,需要抬高NMOS管的柵電壓。增加?xùn)烹妷鹤钪苯拥霓k法就是提高電路的電源低壓,但是從低電壓系統(tǒng)角度來說這增加了成本,因此需要加一個(gè)電源電路,最好的辦法是芯片內(nèi)部產(chǎn)生一個(gè)電壓來增加?xùn)烹妷骸?br>
1.2柵增壓原理
柵增壓原理是依靠電荷泵的工作原理:先貯存能量,然后以受控方式釋放能量,以獲得所需的輸出電壓。本文中所用的電容式電荷泵采用電容器來貯存能量,通過電容對電荷的積累,電容A端接時(shí)鐘信號(hào)Clk,當(dāng)A點(diǎn)電位為0時(shí),B點(diǎn)電位為Vdd;當(dāng)A點(diǎn)電位為Vdd時(shí),由于電容兩端的電壓不會(huì)突變,理想情況下,此時(shí)B點(diǎn)電位被抬升為2Vdd,因?yàn)殡姾杀玫挠行ч_環(huán)輸出電阻存在,使得實(shí)際情況B點(diǎn)電位低于2Vdd.

圖2柵增壓基本電路
2改進(jìn)型模擬開關(guān)電路設(shè)計(jì)
2.1電路描述和分析
圖4為本文設(shè)計(jì)的柵增壓電路,M3和M4組成了一對傳輸門,可以保證輸入信號(hào)在高低電壓無損失地傳輸?shù)絺鬏旈T的另一端。M1的柵極接反相器的輸出端,漏源兩端分別接電容正極板和電源電壓,M1的作用是當(dāng)開關(guān)連通且時(shí)鐘信號(hào)為高電平時(shí),保證電容電壓抬升后不會(huì)迅速放電使電容正極板電位為0.M2的柵極接時(shí)鐘信號(hào)CLK,漏源兩端分別接電容正極板和電源電壓,它的作用是當(dāng)開關(guān)關(guān)閉時(shí),M2導(dǎo)通時(shí)使電容正極板電位保持在電源電壓。下面分析該電路的工作情況:
當(dāng)開關(guān)關(guān)閉時(shí),S為低電平,M1導(dǎo)通,保證電容正極板上的電壓最低為VDD,此時(shí)M3和M4都不導(dǎo)通,信號(hào)不能達(dá)到輸出端。當(dāng)開關(guān)導(dǎo)通時(shí),S為高電平,M1截止,時(shí)鐘為低電平時(shí),M2和M5導(dǎo)通,M1和M6關(guān)閉,電容充電至P-Vds;CLK為高時(shí),由于電容兩邊電壓不會(huì)突變,電容正極板上的電壓會(huì)被抬升至原來的兩倍。
從上面分析可知,所有跟開關(guān)柵端電壓連通的電壓都是和輸入信號(hào)無關(guān)的,因此開關(guān)導(dǎo)通電阻與輸入信號(hào)無關(guān),可以大大抑制信號(hào)有關(guān)的電壓損失,保證了信號(hào)的線性度和器件的可靠性。

圖3柵增壓仿真結(jié)果

圖4改進(jìn)型柵增壓電路
2.2性能仿真及結(jié)果分析
基于NEC0.35umCMOS工藝的模型參數(shù),采用Spectre模擬軟件,對圖3進(jìn)行模擬仿真。電源電壓為5V,輸入信號(hào)singlin為500KHZ,信號(hào)幅度5V,電荷泵時(shí)鐘為100MHZ,電容為1.8pf,仿真得到了開關(guān)導(dǎo)通電阻隨Vg電壓的變化(圖5)、電荷泵抬升后的電壓(圖6)和輸出信號(hào)結(jié)果(圖7),可見,導(dǎo)通電阻在大于電源電壓時(shí)急劇降低,電容正極板上的電壓可以抬升至9V,輸出電壓波形比較理圖想,損耗很小,幾乎沒有。

圖5開關(guān)導(dǎo)通電阻的DC仿真結(jié)果

圖6柵電壓tran仿真結(jié)果

圖7輸出電壓仿真結(jié)果
3結(jié)語
本文分析了CMOS模擬開關(guān)對傳輸信號(hào)的影響。利用電荷泵技術(shù),設(shè)計(jì)了一種5V電源電壓下的模擬開關(guān),該器件適用于0~5V的輸入信號(hào),并能將0~5V的時(shí)鐘信號(hào)抬升到0~10V,從而具有更好的線性特性和更小的導(dǎo)通電阻,大大降低信號(hào)的失真。對開關(guān)電路進(jìn)行了分析,采用Spectre軟件,基于NEC0.35um CMOS工藝條件進(jìn)行仿真,驗(yàn)證了該結(jié)構(gòu)的線性度和可靠性。 |