国产日韩精品欧美一区-国产日韩高清一区二区三区-国产日韩不卡免费精品视频-国产日产欧美精品一区二区三区-午夜国产精品免费观看-午夜国产精品理论片久久影院

設為主頁  加入收藏
 
·I2S數字功放IC/內置DSP音頻算法功放芯片  ·馬達驅動IC  ·2.1聲道單芯片D類功放IC  ·內置DC/DC升壓模塊的D類功放IC  ·鋰電充電管理IC/快充IC  ·無線遙控方案  ·直流無刷電機驅動芯片
當前位置:首頁->方案設計
工業BLDC系統,如何精準測量電機的扭矩和速度?
文章來源:永阜康科技 更新時間:2021/1/4 11:49:00
在線咨詢:
給我發消息
李湘寧 2850985550
給我發消息
張代明 3003290139
給我發消息
鄢先輝 2850985542
13713728695
 

無刷直流 (BLDC) 電機是工業生產車間不可或缺的一部分,主要用于伺服、致動、定位和變速應用。在這些應用中,精確的運動控制和穩定的運行至關重要。由于 BLDC 基于運動磁場的原理運行以產生電機扭矩,因此在設計工業 BLDC 系統時,主要的控制挑戰在于準確地測量電機的扭矩和速度。
 
為了捕獲 BLDC 電機的扭矩,需要使用多通道同步采樣模數轉換器(ADC)同時測量三個感應相電流中的兩個。由具有合適算法的微控制器計算第三個瞬時相電流。此過程可以準確、即時地記錄電機狀況,而這是開發堅固耐用的高精度電機扭矩控制系統的關鍵步驟。
 
本文將簡要討論與實現精確的扭矩控制相關的問題,包括一種實現所需分流電阻器的經濟高效的方法。然后介紹 Analog Devices 的 AD8479 精密差分放大器和 AD7380 雙通道采樣逐次逼近寄存器 ADC (SAR-ADC),并展示如何將它們用于獲取精確的相位測量值,以實現可靠的系統設計。

BLDC 電機的工作原理

BLDC 電機是具有反電動勢(EMF)波形的永磁同步電機。觀察到的端子反電動勢并非恒定的;它會隨著轉子的扭矩和速度而變化。雖然直流電壓源不能直接驅動 BLDC 電機,但 BLDC 的基本工作原理與直流電機相似。
 
BLDC 電機包含一個具有永磁體的轉子和一個具有感應繞組的定子。這種電機本質上是一種外翻的直流電機,其中消除了電刷和換向器,然后將繞組直接連接到控制電子設備。控制電子設備取代了換向器的功能,以正確的順序為繞組通電,獲得所需的運動。通電的繞組以同步、平衡的模式圍繞定子旋轉。通電的定子繞組引導轉子磁鐵,并在轉子與定子對齊時開關。
 
BLDC 電機系統需要一個三相無傳感器 BLDC 電機驅動器,該驅動器在電機的三個繞組中產生電流(圖 1)。電路通過具有涌流控制的數字功率因數校正 (PFC) 級供電,可為三相無傳感器驅動器提供穩定的電力。


 
圖 1:電機控制系統包括用于穩定電源的 PFC、用于 BLDC 電機繞組的三相無傳感器驅動器、分流電阻和電流檢測放大器、同步放大器 ADC 以及微控制器。

三個激勵電流驅動 BLDC 電機,每個在繞組中激勵并產生不同的相位,這些相位合計為 360°。不同的相位值很重要:由于三個分支的總激勵保持 360°,因此它們會均勻相抵以保持 360°,例如 90° + 150° + 120°。
 
盡管在任意給定時間都必須獲知系統所有三個繞組的電流,但要在平衡系統中做到這一點,只需要測量三個繞組中兩個繞組的電流,并使用微控制器計算第三個繞組。這兩個繞組可使用分流電阻器和電流檢測放大器同時進行檢測。
 
信號路徑的末端需要一個雙通道同步采樣 ADC,用于將數字測量數據發送到微控制器。每個激勵電流的幅度、相位和定時提供了精確控制所需的電機扭矩和速度信息。

使用 PC 板銅電阻器的電流檢測

盡管在這種精確的測量和數據采集設計中有很多需要關注的問題,但此過程始于前端,需要開發一種有效的低成本方式來感測 BLDC 電機繞組的相位信號。若要做到這一點,可通過放置一個較小值的直插式 PC 板電阻器 (RSHUNT),并使用電流檢測放大器來檢測該小電阻器上的電壓降(圖 2)。假設電阻值足夠低,那么電壓降也很低,并且測量策略對電機電路的影響極小。


 
圖 2:電機相位感測系統使用電流分流電阻器 (RSHUNT),配合高精度放大器(例如 Analog Devices 的 AD8479)和高分辨率 ADC (AD7380) 測量瞬時電機相位。

在圖 2 中,電流檢測放大器捕獲了 IPHASE x RSHUNT 的瞬時電壓降。然后,SAR-ADC 將此信號數字化。分流電阻器選擇值涉及 RSHUNT、VSHUNT、ISHUNT 與放大器輸入誤差之間的相互作用。
 
RSHUNT 增大將導致 VSHUNT 增大。好消息是,這將緩解放大器的電壓偏移 (VOS) 誤差和輸入偏置電流偏移 (IOS) 誤差的顯著性。但是,較大 RSHUNT 的 ISHUNT x RSHUNT 功率損耗會降低系統的功率效率。同樣,RSHUNT 的額定功率也會影響系統的可靠性,因為 ISHUNT x RSHUNT 功率耗散會產生自熱狀態,而這可能導致標稱 RSHUNT 電阻發生變化。
 
對于 RSHUNT,可以從多家供應商獲取特殊用途電阻器。但還有一種低成本的替代方案,即運用細致的布局技術來制造 PC 板印制線電阻 RSHUNT(圖 3)。


圖 3:細致的 PC 板布局技術提供了一種經濟高效的方法來創建適當的 RSHUNT 值。

計算 RSHUNT 對應的 PC 板印制線電阻

由于工業應用中可能出現極端溫度,因此在電路板分流電阻器設計中需要考慮溫度因素,這一點很重要。在圖 3 中,銅 PC 板印制線分流電阻器在 20°C 時的溫度系數 (α20) 約為 +0.39%/°C(該系數會隨溫度而變化)。長度 (L)、厚度 (t)、寬度 (W) 和電阻率 (rñ) 決定了 PC 板印制線電阻。
 
如果 PC 板具有 1 盎司 (oz) 銅 (Cu),則厚度 (t) 等于千分之 1.37 英寸,電阻率 (r) 等于每英寸 0.6787 微歐 (µW)。PC 板印制線面積按印制線方框 (),即 L/W 面積進行度量。例如,寬度為 0.25 英寸的 2 英寸 (in.) 印制線對應 8 個 結構。
 
利用上述變量,通過(公式 1)計算在室溫下 PC 板 1 盎司銅的印制線電阻 R:
 

公式 1
 
其中,T = 電阻器的溫度。
 
例如,從 1 盎司銅 PC 板上每個 BLDC 電機分支的最大電流為 1 安培 (A),RSENSE 長度 (L) 為 1 英寸,印制線寬度為 50 密耳(0.05 英寸)開始,可使用公式 2 和 3 計算 20°C 時的 RSHUNT:
 

公式 2
 

公式 3
 
通過公式 4 計算此電阻器在分流電流為 1 A 時的功率耗散:
 

公式 4
 
同步采樣 ADC 轉換

圖 2 中的 ADC 將相位周期中某一點的電壓轉換為數字表示。關鍵一點是,該測量應包含所有三個繞組的同步相電壓。這是一個平衡的系統,因此如前所述,只需測量三個繞組中的兩個;外部微控制器將會計算第三個繞組的相電壓。
 
此電機控制系統適用的 ADC 是 AD7380 雙通道同步采樣 SAR-ADC(圖 4)。


 
圖 4:快速、低噪聲的雙通道同步采樣 SAR-ADC(例如 AD7380)可捕獲兩個電機繞組的瞬時狀態。

在圖 4 中,AD8479 是一款精密差分放大器,具有極大的輸入共模電壓范圍(±600 伏),可承受來自三相無傳感器驅動器的寬電機電流驅動偏移。AD8479 的特性使其在不要求電流隔離的應用中可以取代昂貴的隔離放大器。
 
AD8479 的關鍵特性還包括低補償電壓、低補償電壓漂移、低增益漂移、低共模抑制漂移,以及出色的共模抑制比 (CMRR),可適應快速的電機變化。
 
AD7380/AD7381 分別是 16 位 /14 位高速、低功耗的雙通道同步采樣 SAR-ADC,其吞吐率高達每秒 4 M 次采樣。差分模擬輸入可接受較寬的共模輸入電壓,并且內置一個 2.5 伏緩沖基準 (REF) 電壓源。
 
為了實現精確的扭矩和速度控制,雙通道同步采樣 SAR-ADC 結構可即時捕獲電流檢測放大器的輸出。為此,AD7380/AD7381 內置了兩個具有同步時鐘的相同 ADC。它們還分別擁有一個帶有容性電荷再分配網絡的容性輸入級(圖 5)。


 
圖 5:所示為 AD7380 兩個通道之一的 ADC 轉換級。當 SW3 開路并且 SW1 和 SW2 閉合時,信號采集開始。此時,CS 兩端的電壓隨著 AINx+ 和 AINx- 的變化而變化,導致比較器輸入失去平衡。

在圖 5 中,VREF 和接地是采樣電容器 CS 兩端的初始電壓。若將 SW3 開路并閉合 SW1 和 SW2,則將啟動信號采集。當 SW1 和 SW2 閉合時,采樣電容器 CS 兩端的電壓隨 AINx+ 和 AINx- 處的電壓而變化,導致比較器輸入失去平衡。然后將 SW1 和 SW2 開路,并捕獲 CS 兩端的電壓。
 
CS 電壓捕獲過程涉及到數模轉換器 (DAC)。DAC 加上和減去來自 CS 的固定電荷量,使得比較器恢復平衡狀態。至此,轉換完成,將 SW1 和 SW2 開路并閉合 SW3,以去除殘留電荷并準備下一個采樣周期。
 
在 DAC 轉換期間,控制邏輯生成 ADC 輸出代碼,并通過串行接口訪問器件的數據。

總結

若要精確測量 BLDC 電機扭矩和速度,首先需有精確的低成本分流電阻器。如上所述,可使用 PC 板印制線經濟高效地實現此電阻器。
 
通過將此器件添加到 AD8479 電流檢測放大器和 AD7380 同步采樣 SAR-ADC 的組合中,設計人員可以創建穩健的高精度扭矩和速度控制系統測量前端,以用于惡劣環境下的電機控制應用。

 
 
 
    您可能對以下產品感興趣  
產品型號 功能介紹 兼容型號 封裝形式 工作電壓 備注
AT1106S AT1106S為攝像機、消費類產品、玩具和其它低電壓或者電池供電的運動控制類應用提供了一個集成的電機驅動 器解決方案。 SOT23-6 2.7V-15V 單通道低壓H 橋電機驅動芯片
AT1106 AT1106/AT1106S為攝像機、消費類產品、玩具和其它低電壓或者電池供電的運動控制類應用提供了一個集成的電機驅動器解決方案。 SOT23-6 2.7V-15V 單通道低壓H 橋電機驅動芯片
AT8222 DRV8870/A4950 ESOP-8 5.5V-20V 單通道刷式直流電機驅動芯片
AT8236 AT8236是一款刷式直流電機驅動器,能夠以高達6A的峰值 電流雙向控制電機。 DRV8870/A4950/A4953 ESOP-8 5.5V-30V 單通道刷式直流電機驅動芯片
 
 
    相關產品  
ACM6755(4.5V-28V工作電壓、4.8A相電流、支持3霍爾應用的三相BLDC無刷直流電機驅動芯片)
ACM6754(24V/4.8A三相BLDC直流無刷電機驅動芯片)
ACM6753(18V/3A三相無感BLDC直流無刷電機驅動IC)
ACM6763(4.5V-32V工作電壓、5A電流、車規級三相BLDC無刷直流電機驅動IC)
ACM6732(2.7V-16V工作電壓、滿足1-3節鋰電池應用,三相直流無刷電機BLDC驅動芯片)
 
 
·藍牙音箱的音頻功放/升壓/充電管
·單節鋰電內置升壓音頻功放IC選型
·HT7179 12V升24V內置
·5V USB輸入、三節鋰電升壓型
·網絡主播聲卡專用耳機放大IC-H
 
M12269 HT366 ACM8629 HT338 

業務洽談:手機:13713728695(微信同號)   QQ:3003207580  EMAIL:panbo@szczkjgs.com   聯系人:潘波

地址:深圳市寶安西鄉航城大道航城創新創業園A5棟307/309

版權所有:深圳市永阜康科技有限公司  備案號:粵ICP備17113496號